Seminar:
Fall 2021, Thursdays, Blocker 506A, 4:00-4:50 PM (in-person, with Zoom option- see email for link).
Date: October 28
Jordy Lopez Garcia
Abstract
Since the 19th century, understanding the number of real roots of a polynomial has become ubiquitous in the study of real algebraic geometry. In particular, three theorems by Budan-Fourier, Sylvester and Sturm give us powerful methods to bound and count the number of real solutions of univariate polynomials. I will present a Macaulay2 package that implements algorithms for studying real roots of univariate polynomials based on such theorems. This is a joint project with Frank Sottile, Thomas Yahl and Kelly Maluccio.